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Abstract

We examine the nonlinear boundary value problem formed by the Thomas–
Fermi equation φ′′ = φ3/2x−1/2, complemented with the boundary conditions
φ(0) = 1 and φ(∞) = 0. We show that the value of φ′ at the origin, which
plays a crucial role in this problem, can be accurately bounded a priori, by
exploiting integral properties of the Thomas–Fermi equation, and without any
assumption on the functional dependence of φ(x). Extension of the approach
to more general equations of the Emden–Fowler type is also briefly considered.

PACS numbers: 02.30.Hq, 02.60.Lj

1. Introduction

The charge density distribution in neutral atoms of high atomic number is well described
by the Thomas–Fermi equation (see, for example, the review [1]), which, using suitable
normalizations, can be written as

φ′′ = φ3/2

x1/2
. (1)

The Thomas–Fermi potential φ is a non-negative function of x, which is taken to satisfy the
boundary conditions

φ(0) = 1, φ(∞) = 0. (2)

Equation (1) is one of the famous equations of mathematical physics (see [2]), and has been
the subject of many investigations. By now, the physical implications of this equation, and,
more generally, of the Thomas–Fermi atomic theory have been thoroughly explored (see,
e.g., [1, 3]). On the other hand, mathematical aspects of (1) are still frequently discussed in
the literature, since the equation represents a popular setting for the test of new methods for
solving nonlinear ode’s.

From a mathematical point of view, (1) and (2) define a difficult nonlinear boundary value
problem. The main complications involved, already recognized in earlier work by Hille [4],
are clearly expounded in [2, 5]. A key issue is the determination of the slope φ′

0 ≡ φ′(0),
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which also has an important physical meaning, being proportional to the energy of the neutral
atom. As noted in [5], φ′

0 can be regarded as an eigenvalue of the problem; the correct value,

φ′
0 = −1.588 0710 . . . , (3)

yields a well-posed boundary value problem, with a monotone decreasing solution, while
larger or smaller values of φ′

0 give rise to singular or spatially confined solutions, respectively
(see [2]). This makes the construction of a numerical approach to the solution of (1)–(2) a
delicate matter.

The quantity φ′
0 appears difficult to compute by any means (the value in (3) results from an

accurate numerical integration by Kobayashi et al [6]). Since φ′
0 represents a global property

of the problem, it cannot be computed via a local expansion; when series solutions are sought,
as in [7], calculation of φ′

0 involves an elaborate matching of small-x and large-x expansions.
Iterative approaches, such as the δ-expansion method introduced by Bender et al [5], and
further examined in [8], have provided a good alternative. However, a pretty large number
of iterations is required for an accurate solution (and an accurate φ′

0), and, except for the
very first steps, the approximant linear ode’s must be solved numerically. Although other
approaches have been proposed in the last two decades (see, e.g., [9] and references therein),
these difficulties have not been fully overcome.

A point to be stressed is that in all these works approximations for φ′
0 are to be computed

a posteriori, as a part of the solution. It is not clear, however, whether this is mandatory;
since φ′

0 is a global quantity, information on it could be deducible from integral properties of
the equation. The main purpose of this paper is to explore this possibility. We shall show
that useful integral relations can indeed be derived for (1), and employed to construct accurate
a priori bounds for φ′

0. This will require no assumption on the functional form of φ(x); we will
only need to use the fact that φ is a decreasing function of x, which is a simple consequence
of the non-negativity of φ, and of (1)–(2).

To end the paper, we will briefly examine the extension of the approach to more general
equations of the Emden–Fowler type.

2. Derivation of the bounds

Let us show, with a simple example, how integral properties may be used to bound φ′
0.

Multiplying (1) by xφ′n−1, with n > 1 an integer, and integrating on both sides, gives∫ ∞

0
φ′n = −n

∫ ∞

0
x1/2φ3/2φ′n−1. (4)

Integrating twice the term on the rhs by parts, and using (1) and (2), gives rise to a term
proportional to φ′n−1

0 , and we end up with the identity

φ′n−1
0 = −6n − 5

n

∫ ∞

0
φ′n + 2(n − 1)(n − 2)

∫ ∞

0
φ4φ′n−3. (5)

For n = 2, this gives

φ′
0 = −7

2

∫ ∞

0
φ′2, (6)

which is nice, but not very helpful. Instead, for n = 4, one finds

φ′3
0 = −12

5
− 19

4

∫ ∞

0
φ′4, (7)

which is a useful relation. Since the last term is negative definite, (7) implies

φ′
0 < − (

12
5

)1/3 = −1.338 8659. (8)
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The upper bound (8) differs from the ‘true’ value (3) by less than 16%, which is not too bad
for a first try. As we shall see, with a little effort, it is possible to do much better.

2.1. First step

We now consider the identity∫ ∞

0

φ′

φm
= − 1

1 − m
, (9)

with m < 1. Multiplying and dividing the integrand on the lhs by x1/2φ−3/2, using (1), and
integrating by parts, we get∫ ∞

0

φ′

φm
= −1

4

∫ ∞

0

1

x1/2

φ′2

φm+3/2
+

1

2

(
m +

3

2

)∫ ∞

0
x1/2 φ′3

φm+5/2
. (10)

(Here we have assumed that x1/2φ′2φ−m−3/2 vanishes at infinity; since φ decays as x−3 at large
x (see, e.g., [1]), this is certainly verified for m < 1.) As in the previous example, we now
perform a second integration by parts, which produces a term proportional to φ′3

0 . Placing the
result in (9), and solving for K ≡ φ′3

0 , finally gives

K = − 12

1 − m
+ F(m), (11)

with

F(m) ≡ 5

2

(
m +

21

10

)∫ ∞

0

φ′4

φm+4
− 3

2

(
m +

3

2

)
(m + 4)

∫ ∞

0
x

φ′5

φm+5
. (12)

Note that the first term on the rhs of (12) is positive for m > −21/10, while the second is
negative definite for −4 < m < −3/2 (φ being a monotone decreasing function of x). It
follows that

K < − 12

1 + 21/10
= −120

31
, (13)

and

K > − 12

1 + 3/2
= −24

5
, (14)

which give the bounds

−1.686 8653 < φ′
0 < −1.570 1453. (15)

Another way to look at this result is the following. Since F is negative for m � −21/10,
and positive for m � −3/2, there must be a value m∗, in the interval ]−21/10,−3/2[, such
that F(m∗) = 0 and K = −12/(1 − m∗). Thus, improving the bounds on K is equivalent to
narrowing the interval in which m∗ is included.

The upper bound in (15) is already quite good. We note, by comparison, that it improves
the bound φ′

0 < −1.563 derived by Anderson et al [10], by using complementary variational
principles. The lower bound is not so tight, but can be improved by focusing on the points at
which the second term in (12) vanishes. For m = −3/2, (11) yields

K = −24

5
+

3

2

∫ ∞

0

φ′4

φ5/2
, (16)

while for m = −4, it reduces to the expression (7), previously obtained. It follows from (16)
that

K > −24

5
+

3

2

∫ ∞

0
φ′4, (17)
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and, using (7), that

K > −528

125
. (18)

Thus, this first step gives us the bounds

−1.616 4960 < φ′
0 < −1.570 1453. (19)

2.2. Second step

To improve the bounds (19), we need to work on the expression of F(m). The basic idea is
to keep integrating by parts, as in (10), to bring in higher powers of K, together with integrals
involving higher powers of φ′. This is done with the help of the identities

∫ ∞

0

φ′p

φm
= φ

′p+2
0

2(p + 1)(p + 2)
− 1

p + 1

[
m + 3

2(p + 2)
+

m + 3/2

p + 3

] ∫ ∞

0

φ′p+3

φm+4

+
(m + 3/2)(m + 4)

(p + 1)(p + 3)

∫ ∞

0

xφ′p+4

φm+5
, (20)∫ ∞

0
x

φ′p

φm
= 3

2(p + 1)(p + 2)

(∫ ∞

0

φ′p+2

φm+3
− (m + 3)

∫ ∞

0
x

φ′p+3

φm+4

)

+
m + 3/2

p + 1

∫ ∞

0
x3/2 φ′p+2

φm+5/2
, (21)

whose derivation parallels that of (10) (note that evaluation of (20) for p = 1 directly gives
(11) and (12)). Applying (20) and (21) to (11) and (12), we find

K = − 12

1 − m
+

1

24

(
m +

21

10

)
K2 + G(m), (22)

with

G(m) ≡ −1

6

(
m2 +

73

10
m +

591

56

)∫ ∞

0

φ′7

φm+8

+
1

8

(
m2 +

67

10
m +

321

35

)
(m + 8)

∫ ∞

0
x

φ′8

φm+9

− 1

4
(m +

3

2
)(m + 4)

(
m +

13

2

) ∫ ∞

0
x3/2 φ′7

φm+15/2
. (23)

It is readily seen that G(m) is negative definite in the range −3.482 1562 � m � −1.985 9902,
the upper limit coinciding with the larger root of the coefficient of the first integral. In this
range, the following inequality holds,

K < − 12

1 − m
+

1

24

(
m +

21

10

)
K2, (24)

giving the bound

K <
12

m + 21/10

(
1 −

√
1 + 2

m + 21/10

1 − m

)
. (25)

Since the rhs of (25) is a monotone decreasing function of m, the best bound,

K < −3.944 8425, (26)

is obtained at m = −1.985 9902 .
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Expressions (22) and (23) can now be used to improve the lower bound, following a
procedure similar to that used in the first step. Evaluating (22) at m = −3/2 and m = −4
yields

K = −24

5
+

1

40
K2 − 173

560

∫ ∞

0

φ′7

φ13/2
+

6

35

∫ ∞

0
x

φ′8

φ15/2
, (27)

and

K = −12

5
− 19

240
K2 +

247

560

∫ ∞

0

φ′7

φ4
− 57

280

∫ ∞

0
x

φ′8

φ5
, (28)

respectively. It follows from (27) that

K > −24

5
+

1

40
K2 − 173

560

∫ ∞

0

φ′7

φ4
+

6

35

∫ ∞

0
x

φ′8

φ5
, (29)

which, using (28), can be rewritten as

420K > −8004

5
− 361

48
K2 +

(
1482

35
− 10089

2800

) ∫ ∞

0
x

φ′8

φ5
. (30)

Neglecting the last term, that is positive, we finally obtain a quadratic inequality for K, which
gives the bound

K > −4.114 5866. (31)

Thus, the result of the second step is

−1.6024165 < φ′
0 < −1.580 0708, (32)

with both bounds at less than 1% from the true value.

2.3. Third step

The third step is still straightforward, but more laborious. We first need to integrate the last
term in (23) by parts, which produces another term containing the integral of xφ′8φ−m−9, plus
an additional term. Then, we use (20) and (21) to get

K = − 12

1 − m
+

1

24

(
m +

21

10

)
K2 − 1

864

(
m2 +

73

10
m +

591

56

)
K3 + H(m), (33)

with

H(m) ≡ 11

1728

(
m3 +

78

5
m2 +

49 031

700
m +

1298 427

15 400

) ∫ ∞

0

φ′10

φm+12

− 1

192
(m + 12)

(
m3 + 15m2 +

3271

50
m +

108 153

1400

) ∫ ∞

0
x

φ′11

φm+13

+
1

48

(
m +

21

2

)(
m3 +

69

5
m2 +

7807

140
m +

2167

35

) ∫ ∞

0
x3/2 φ′10

φm+23/2

− 1

32

(
m +

3

2

)
(m + 4)

(
m +

13

2

)
(m + 9)

∫ ∞

0
x2 φ′9

φm+10
. (34)

Again, there is a range in which H(m) is negative definite. The upper limit of this range is
m = −1.932 2569, which is the largest root of the cubic in the first term. The corresponding
upper limit for K resulting from (33) is

K < −3.969 1493. (35)

5
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Calculation of the lower bound proceeds as in the previous step, and we end up with the
inequality

2.069 011K > −7.365 6264 − 0.059 63K2 + 1.128 9438 × 10−3K3, (36)

which yields

K > −4.075 6506. (37)

Therefore, our final bounds for φ′
0 are

−1.597 3459 < φ′
0 < −1.583 3095. (38)

As a comparison, we may note that the upper bound in (38) is closer to (3) than the [20, 20]
homotopy–Pade’ approximation computed in [9] (see their table 2).

3. Conclusions

In this work, we have analysed the classical boundary value problem (1)–(2), and shown that
very accurate a priori bounds on the slope φ′

0 can be obtained, by exploiting integral properties
of the Thomas–Fermi equation.

Since the procedure can be iterated, the best bounds we have obtained can presumably
be refined, although at the expense of lenghty calculations. Examination of (33) and (36)
indicates that the terms containing powers of K, created in the iteration, are of the same sign,
and of rapidly decreasing size. Would this prove true in the subsequent steps, one would
expect the iteration to converge. If so, one might then wonder if the procedure would actually
converge towards the true value of the slope (this would be remarkable, since the slope would
then be solely determined by the global structure of the boundary value problem). Answering
these questions does not seem easy, since at each step terms of both signs are created, which
combine in ways that become more and more complicated as the iteration progresses.

Leaving the convergence problem as an open issue, we shall conclude by pointing out an
easy extension to more general equations of the Emden–Fowler type. Clearly, our approach
relies on the 1/2 power of x appearing in (1), which makes it possible to construct polynomial
inequalities for K. On the other hand, there appears to be no constraint on the exponent of φ.
Consider the Emden–Fowler equation

φ′′ = φs

x1/2
. (39)

When s > 1, the solution of (39) decays as x−q, q = 3/(2(s − 1)), at large x (see [11]),
and we may consider the same boundary value problem just discussed for the Thomas–Fermi
equation.

Bounds on φ′
0 can be found as in the previous section. The identity (20) is now replaced

by∫ ∞

0

φ′p

φm
= φ0

′p+2

2(p + 1)(p + 2)
− 1

p + 1

[
m + 2s

2(p + 2)
+

m + s

p + 3

] ∫ ∞

0

φ′p+3

φm+2s+1

+
(m + s)(m + 2s + 1)

(p + 1)(p + 3)

∫ ∞

0

xφ′p+4

φm+2s+2
. (40)

For p = 1, this gives (11) again, with the following expression for F(m):

F(m) ≡ 5

2

(
m +

7

5
s

) ∫ ∞

0

φ′4

φm+2s+1
− 3

2
(m + s)(m + 2s + 1)

∫ ∞

0
x

φ′5

φm+2s+2
. (41)

6
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This leads to the bounds

− 12

1 + s
< K < − 60

5 + 7s
, (42)

which reduce to (13)–(14), as they should, when s = 3/2. The lower bound can be improved
as done for the Thomas–Fermi equation, and we get

−
(

12

1 + s

1 + 4s/5

1 + s

)1/3

< φ′
0 < −

(
60

5 + 7s

)1/3

, (43)

which generalize the bounds (19). Further refinement of these bounds, along the lines
previously discussed, appears possible.
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